摘要:针对高粘度介质在选择液位开关时存在的电极挂料问题进行研究。电容式液位测量计测量导电介质时,测量的结果经常受到导电介质电极挂料的影响,分析了电极挂料产生的原因、挂料对测量结果的影响,提出了利用射频导纳技术解决挂料的问题,给出了射频导纳电容式物位测量系统的实施方案。射频导纳可以理解为用高频无线电波测量电路中因液位变化引起的导纳变化。分析了普通电容式液位测量原理和射频导纳式液位测量原理,并进行两种方案的比较。
引言
珠海(壳牌)润滑油有限公司2011年新建的40 kt/a润滑脂项目含三条生产线(满足2015年需求),每条生产线设计生产能为10 kt/a;同时预留一条10 kt/a生产线满足长期需求,这是壳牌在中国兴建的地衣座润滑脂生产厂。
1、润滑脂的特点
润滑脂为稠厚的油脂状半固体,用于机械的摩擦部分,起润滑和密封作用;也用于金属表面,起填充空隙和防锈作用。主要由矿物油和稠化剂调制而成。有以下优点:a)在金属表面具有良好的粘附性,不易流失,在不易密封的部位使用,可简化润滑系统的结构;b)抗碾压,在高负荷及冲击负荷作用下,仍有良好的润滑能力;c)润滑周期长,不需经常补充、更换,而且对金属部件具有一定的防锈性,相对地降低了维护费用;d)适用的温度范围较宽,适用的工作条件也较宽。缺点是稠度大。
正是因为高a度的特性,#终产品a度可达
7.5X104 mPa.s,在选择罐区仪表时,就要提出更加具有针对性的选择方案。这里仅对液位开关类型仪表提出说明。
2液位开关测量原理
2.1电容式液位测里原理
电容式液位计是利用电容传感器将被测介质液位的变化转变为电容量的变化,然后通过测量电容量的方法来求得液位值。
由绝缘介质分开的两个平行金属板组成的平板电容器,当忽略边缘效应影响时,其电容量与真空介电常数Eo(8. 854*10-12F/m),极板间介质的相对介电常数Er,极板的有效面积A以及两极板间的距离L有关:
若L,Er,A三个参量中的任意一个发生变化时,都会引起电容量的变化,通过测量电路就可以转换为电量输出。因此,电容式传感器可以分为变极距型、变面积型和变介质型三种类型。
从原理上讲,电容式液位传感器属于变介质型。在液位测量中,将极板插人被测量的液位之中,随着物位的上升,物体介质取代原有的空气填充极板间,电容器的介电常数发生变化,从而引起电容量的变化。根据被测物体极性的不同,传感器探头也有所不同。一般来说,待测物料介质有绝缘和导电之分,因此对探头也要有相应处理。
2.1.1非导电介质的电容式液位测量
传感器结构如图1所示。金属管式电极作为电容的一个极板,容器壁作为电容的另一个极板。被测量的非导电介质随物位高度不同而填充原来充满空气的区域,使得物位变化区域中的介电常数发生变化(由空气介质变为非导电介质),从而使电容发生改变。
式中K—常数,对于圆柱形容器,同轴安装时,K----2π;eo—空气介电常数;e1—被测物料的介电常数;Ho—电极有效的长度;H—浸入被测液体中的有效长度;D—被测容器的等效直径;d—金属管电极的直径。
注:C,—不随液位变化的等效杂散电容;C2—液面以上,两个电极板间以空气为介质形成的电容;C3液面以下,两个电极板间以被测液体为介质形成的电容:
由式(Z)和式(3)可以得出总电容:
从式(4)可以看出K, Ho ,D,d对于一个固定的容器和探头,都可以看作是常量,而C1为固有的杂散电容,因此,Ct就只与测杆被浸人的长度(所测液位高度)有关,且成线性关系。当被测介质液位发生变化时,传感器的电容值也随之改变,因此检测出电容值就可以求出对应的液位。
在电容式液位测量中,也可以用上述装置来测量非导电固体散料的液位,由于固体摩擦力较大,容易滞留于测杆之上,因此,可以采用光滑、不易腐蚀的金属电极棒作为测杆,进行液位测量。
2.1.2导电介质的电容式液位测量
如果被测量的液体是导电的,比如化工生产中的电解质溶液,则在测量其液位时,不能采用裸金属管作为电极,应采用带绝缘层的金属管作为测杆。根据化学上的相似相溶原理,绝缘层一般采用聚乙烯、法兰等抗腐蚀、与被测介质有#小的附着力的绝缘材料制成。具体测量装置如图2所示。
这些电容的计算公式为
式中L—电极有效的长度;D1—测杆包括绝缘层等效直径;d导电—金属电极的直径。
在测量导电介质时,C4处于短路状态,可以不参加计算。
注:Co—电极间杂散电容,不随物位变化;
C4—测杆浸人被测物料部分形成的电容
由等效电路,可以得出测量导电介质时,总电容:
由式(9)可以看出K,H,D,D1, L,d导电对于一个固定的容器和探头,都可以看作是常量,而Co为固有的杂散电容,因此,总电容Ct就只与测杆被浸人的长度H(所测液位高度)有关,且呈线性关系。当被测液体液位发生变化时,传感器的电容值也随之改变,因此检测出电容值就可以求出对应的液位。
需要注意:测杆上包有一层绝缘层,并不代表只能用来测量导电性物料的液位。这种测杆同样可以用于非导电性物料的液位测量。只是由于被测物料不导电,C4不能看作短路,要参与计算,因此对于非导电性物料其总电容为*
上式同样可以写成Ct与H成正线性相关关系的形式,因此,当被测非导电液体液位发生变化时,传感器的电容值也随之改变,因此检测出电容值就可以知晓对应的液位。
由式(9)和式(10)可见,使用带绝缘层的测杆测量非导电液体和导电液体的时候,H前面的系数有所不同。如果选择合适的测杆参数,调整测杆绝缘层厚度以及测杆与容器的直径之比,使得两者的这个系数的差异增大,则对于两互不相溶的液体混合,从某个基点出发,均匀移动测杆通过分界面实时记录电容值,找到图线上的斜率突变点,可以较准确地获知分界面的相对位置。
2.2射频导纳式液位测量原理
2.2. 1射频导纳基本原理
传统液位测量方法多种多样,如电容式、放射线式、机电式和声波式等,其中又以电容式应用#为广泛。具有耐腐蚀、抗高温、抗高压特点,但有一个致命的缺陷即测量粘附性导电物料时物料会粘附在传感电极的外套绝缘罩上(挂料),如图3所示,形成虚假液位产生很大的测量误差,使仪表无法工作,正是这一点妨碍了电容式液位仪表的推广应用。
应用射频导纳技术对传统的电容式液位仪表进行改造,在保留其优点的前提下,变单纯测量传感电极的电容变化为测量传感电极的复数阻抗变化,从而排除挂料的影响。
粘附在传感电极上的挂料层只是很薄的一层,其横截面积和液位以下的物料相比几乎可以忽略。另一方面,一根一定长度的导线其电阻值和导线本身的横截面积成反比,正是由于物料的横截面积远远大于挂料层的横截面积,且物料具有较好的导电性,因而认为物料的电阻非常小可以忽略,所以认为物料的电位和金属仓壁的电位一样,从而把物料当作电容的一个极板。但挂料层的电阻却很大,从电学角度来看挂料层相当于一条由无穷多个无穷小的电容元件和电阻元件组成的传输线。
根据电化学实验和理论推导结果表明,如果一导电挂料足够长,则挂料和传感电极形成的以传感电极绝缘外套管为介质的电容的容抗和挂料部分所表现出来的电阻在数值上相等。
如果把测得的电容值记为C5,,它包括液位以下导电物料与传感电极以绝缘外套管为介质所表现出的真实液位电容C6和导电挂料与传感电极以绝缘外套管为介质所表现出的电容C7。如果能够从C5减去挂料产生的电容C7,则就可以从C6求得真实液位,并进一步计算出物料的体积、质量或者其他相关量。
导电挂料表现出的电阻记为R,挂料电容的容抗记为
根据射频导纳原理
所以R中包含了挂料电容的有关信息,从中可以得到C7的大小,从而解决了C6=C5-C7的问题。
射频导纳理论的推导要求挂料足够长,实际与挂料层的厚度、传感电极的饱和电容、传感电极的直径长度以及检测时的频率等因素有关系。在实际工程条件下,大于2 cm就算是“足够长”了,在运用射频导纳理论时不会产生较大误差。
2.3两种实现方案的比较
变压器电桥同步数据采集法和电压电流矢量法都是基于射频导纳原理的电容式液位测量方法,它们都可以去除挂料信号,得到真实的液位信号,但是在设计上有很大的不同:变压器电桥同步数据采集法在硬件电路上就可以实现挂料信号和真实的液位信号的分离,定点数据采集系统采集到的值都是由真实液位信号所产生的;而电压电流矢量法采集的数值是传感器输出的电压和电流值(转换为电压值),真实液位信号的分离是通过软件完成的。一般而言,由于挂料产生的信号相对于真实液位信号在量值上要小很多,而电压电流矢量法
在计算上所需要的步骤较多,在加大计算量的同时由于单片机有限字长效应不可避免地带来较多的舍人误差,虽然可以通过加大字长减小误差,但是由于资源所限,不可能将字长设的很长,所以随着计算步骤的增多,将使误差急剧扩大,降低系统性能。而且从硬件设计的角度讲电压电流矢量法相对于变压器电桥同步数据采集法也
要复杂一些。所以选择变压器电桥同步数据采集法作为基本测量方法。
3、结束语
射频导纳液位计是一种从电容式液位控制技术发展起来的,防挂料、更可靠、更准确、适J月性更广的液位控制技术,而它所具有的优点,正是在润滑脂项目中所需要的。以卜只是针对该项[]中的一些应用做了介绍,但已经足可以看出射频导纳液位计在各种苛刻介质条件下的使用前景。